Genetic studies of a male-sterile, female-fertile soybean mutant

Adilson Luiz Seifert^{*1}; Leones Alves de Almeida² and Romeu Afonso de Souza Kiihl²

¹Departamento de Agronomia, Centro de Ciências Agrárias, Universidade Estadual de Londrina (UEL), Caixa Postal 6001, CEP 86051-990, Londrina, PR, Brasil; ²Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA Soja), Caixa Postal 231, CEP 86001-970, Londrina, PR, Brasil. (*Corresponding Author. E-mail: seifert@uel.br)

ABSTRACT

Studies on a new spontaneous male-sterile / female-fertile soybean mutant identified by the Embrapa Soybean breeding program were carried out in Londrina, PR. The mutant showing segregation for male-sterility (BR93-12879) was selected within F_4 progeny lines derived from the IAS-5 (3) X OCEPAR 9-SS1 cross performed in 1993. The F_1 , F_2 and F_3 generations of cross among heterozygous plants of the BR93-12879 line and recessive homozygous plants (male-sterile) of the T 266H (ms_1ms_1), T 259H (ms_2ms_2), T 273H (ms_3ms_3), T 274H (ms_4ms_4), T 277H (ms_5ms_5) and T 295H (ms_6ms_6) lines were studied to identify whether the new mutation is conditioned by a new allele or by a mutation in one of the six loci already described in the literature. The F_1 , F_2 and F_3 plants from the crosses were visually classified as male-sterile or male-fertile. Results from the allele test and inheritance study among the mutant genotype and the recessive homozygous male-sterile lines (ms_1 , ms_2 , ms_3 , ms_4 , ms_5 and ms_6) showed that a single recessive gene controls the male-sterile trait of BR93-12879. This gene is allele to the already described ms_1 -gene and resulted from a genetic mutation in the *ms*-loci.

KEY WORDS: Glycine max, genetics.

INTRODUCTION

Male-sterile / female-fertile mutations are found in many cultivated plant species, but their detection in soybean (*Glycine max* (L.) Merrill) is relatively recent. Since the description of the first completely male-sterile mutant in soybean (Brim and Young, 1971), genetic and cytogenetic studies have identified six independent loci with pairs of recessive alleles conditioning male-sterility. The following alleles have been identified in these studies: ms_1ms_1 in genotype T 260H (Brim and Young, 1971), the ms_2ms_2 in T 259H (Bernard and Creemens, 1975), the ms_3ms_3 in T 273H (Palmer et al., 1980), ms_4ms_4 in T 274H (Delannay and Palmer, 1982), ms_5ms_5 in T 277H (Buss, 1983) and ms_6ms_6 in T 295H (Skorupska and Palmer, 1989).

The male-sterile / female-fertile trait may contribute to genetic studies and facilitate the production of many hybrid seeds necessary for breeding programs where recurrent selection is used.

Several male-sterile genotypes were selected within segregant soybean populations from the Embrapa Soybean breeding program at Londrina PR. BR93-12879 is a spontaneous mutation detected during the population development process and was selected due to its excellent agronomic performance. This study was planned to investigate the inheritance of the BR93-12879 male-sterile trait. Allele tests between this line and the known sources of male sterility genes were carried out to check whether this mutation defines a new locus controlling the character or represents an independent mutation in the already described loci.

MATERIALS AND METHODS

Allele tests were performed to investigate the inheritance of the male-sterile spontaneous mutation of BR93-12879. The male-sterile mutants ms_1 , ms_2 , ms_3 , ms_4 , ms_5 and ms_6 already identified, respectively, in T 266H (Boerma and Cooper, 1978), T 259H, T 273H, T 274H, T 277H e T 295H lines were used. T 266H was used instead of T 260H due to its greater female fertility. Line BR93-12879 was identified in 1993 in a F₄ progeny test selected from the segregant population of the IAS-5(3) X OCEPAR 9-SS1 cross. BR93-12879 seeds segregated for the male-sterile trait and six lines were obtained from the Soybean Germplasm Bank of Embrapa Soybean at Londrina PR.

The F_1 , F_2 and F_3 generations derived from crosses involving BR93-12879 plants heterozygous for male sterility and the six lines were studied in experiments carried out at Embrapa Soybean in 1998, 1999 and 2000. The heterozygous BR93-12879 plants were used as male parent in the crosses.

The parents used in the crosses and the F_1 plants were cultivated in a greenhouse. The F_2 and F_3 generations were conducted in the field with progeny identification. At maturity, the F_1 , F_2 and F_3 plants of each progeny were visually classified as normal male-fertile phenotype or male-sterile. The frequencies of plants in each class was recorded.

A chi-square test (χ^2) (LeClerg et al., 1939) was used to analyze the frequency distribution of plants in the two classes and test the hypotheses of monogenic or digenic inheritance.

RESULTS AND DISCUSSION

Results obtained from the F_1 , F_2 and F_3 generations of crosses involving the BR93-12879 mutant and the known male-sterile lines showed that male sterility in the BR93-12879 is monogenic inherited controlled by a pair of recessive alleles that condition male-sterility.

These results are in agreement with studies that identified six loci with recessive alleles that condition male-sterility in soybean genotypes (Brim and Young, 1971; Bernard and Creemens, 1975; Palmer et al. 1980; Delannay and Palmer, 1982; Buss, 1983; Skorupska and Palmer, 1989).

Several segregation ratios may appear in the F_1 and F_2 generations of the studied crosses. If the mutant gene is allelic to one of the genes already described for male sterility, a 1:1 ratio of fertile and sterile plants is expected in the F_1 and a 3:1 ratio in the in the F_2 . If two independent heterozygous loci, each with two completely dominant alleles for fertility, are involved in the control of the trait, no male-sterile plant is expected in the F_1 generation. In the F_2 generation a 1:1 ratio is expected of families presenting 3:1 and 9:7 segregation ratios of fertile and sterile plants.

The occurrence of male-sterile F_1 plants was observed only in the T 266H x BR93-12879 cross at the ratio of seven normal to five sterile plants. The segregation in the F_1 generation at the expected 1:1 ratio was an indication that the mutant is an allele in the ms_1 locus of the T 266H line. In a total of 223 plants from the F_2 population, 169 fertile and 54 male-sterile individuals were observed (Table 1). The high homogeneity and the non-significant deviation from the expected 3:1 segregation ratio proved that the male-sterile trait in BR93-12879 is inherited as a recessive gene segregating in the ms_1 locus. These data were confirmed by the results from the F_3 family segregation, where no significant difference was found between the expected and the observed 3:1 segregation ratio (Table 2). The available data did not allow any inference as to whether the mutation in BR93-12879 and the ms_1 locus of T 266H carry identical alleles. Genetic studies by Brim and Young (1971); Palmer and Winger (1975); Boerma and Cooper (1978); Palmer et al. (1978); Yee and Jian (1983); Skorupska and Palmer (1987, 1988), reported seven independent mutations for the ms_1 locus.

The F_2 generation of the cross between the T 259H, T 273H, T 274H, T 277H and T 295H genotypes with the BR93-12879 tester line showed 3:1 and 9:7 segregation ratios among the progenies (Table 1). Results from the chi-square tests and the absence of male-sterile F_1 plants were good indicators of ms_2 , ms_3 , ms_4 , ms_5 and ms_6 loci independent segregation. Segregation within the F_3 families crosses confirms the hypothesis of no allelism among the referred loci (Table 2).

CONCLUSION

The following conclusions can be drawn from the genetic segregation results obtained from the crosses involving the male-sterile / female-fertile BR93-12879 soybean line:

1. The male-sterile trait in the BR93-12879 line has single locus Mendelian inheritance controlled by recessive homozygote alleles.

2. The male-sterile mutant represents a mutation in the ms_1 locus, allelic to the ms_1 gene.

ACKNOWLEDGEMENTS

This paper was accepted for publication by the Editorial Board of Embrapa Soybean as manuscript number 15/2001.

Table 1 – Plants segregation of F_2 proge	geny crosses between the genotypes T 266H (ms_1), T 259H (ms_2), T
273H (ms_3), T 274H (ms_4), T 277H	(ms_5) , T 295H (ms_6) and BR93-12879 (ms_1) line.

	Number of plants					Number	of plants			
Cross combination	Fertile	Sterile	$df^{\prime 1}$	χ^2 (3:1) ²	$P^{/3}$	Fertile	Sterile	df	$\chi^{2}(9:7)$	Р
ms1 ms1 x BR93-12879										
Total			5	3,47	0,63					
Pooled	169	54	1	0,07	0,79					
Homogeneity			4	3,40	0,49					
ms2 ms2 x BR93-12879										
Total			4	1,61	0,81			3	1,62	0,65
Pooled	142	44	1	0,18	0,67	109	74	1	0,81	0,37
Homogeneity			3	1,43	0,70			2	0,81	0,67
ms3 ms3 x BR93-12879										
Total			-	-	-			3	2,18	0,54
Pooled	45	12	1	0,47	0,49	202	145	1	0,54	0,46
Homogeneity			-	-	-			2	1,64	0,44
ms4 ms4 x BR93-12879										
Total			2	0,85	0,65			3	1,90	0,59
Pooled	89	24	1	0,85	0,36	128	55	1	0,01	0,92
Homogeneity			1	0	1			2	1,89	0,39
ms5 ms5 x BR93-12879									<i>,</i>	,
Total			3	0,23	0,97			2	0,95	0,62
Pooled	126	42	1	0	1	83	61	1	0,11	0,74
Homogeneity			2	0,23	0,89			1	0,84	0,36
ms6 ms6 x BR93-12879				,	<i>,</i>				<i>,</i>	,
Total			2	0,66	0,72			4	2,76	0,60
Pooled	77	25	1	0,01	0,92	153	102	1	1,46	0,23
Homogeneity		-	1	0,65	0,42		• -	3	1,30	0,73

^{1/} Degrees of Freedom; ^{2/} Chi-square test (χ^2); ^{3/} Probability.

Table 2. Plants segregation of F_3 progeny crosses between the genotypes T 266H (ms_1), T 259H (ms_2), T 273H (ms_3), T 274H (ms_4), T 277H (ms_5), T 295H (ms_6) and BR93-12879 (ms_1) line.

	Segregation 3:1					Segregation 9:7									
Cross combination	Number of plants				Number of plants Number of plants										
Closs combination	Fertile	Sterile	df ¹	$\chi^2 (3:1)^2$	P ^{/3}	Fertile	Sterile	df	$\chi^{2}(3:1)$	Р	Fertile	Sterile	df	χ^2 (9:7)	Р
ms1 ms1x BR93-12879															
Total			5	1,29	0,94										
Pooled	849	266	1	0,78	0,38										
Homogeneity			4	0,51	0.97										
ms2 ms2x BR93-12879															
Total			-	-	-			3	1,48	0,69			3	1,24	0,74
Pooled	95	30	1	0,07	0,79	313	91	1	1,32	0,25	222	157	1	0,83	0,36
Homogeneity			-	-	-			2	0,16	0,92			2	0,41	0,81
ms3 ms3x BR93-12879															
Total			-	-	-			3	0,78	085			3	0,23	0,97
Pooled	131	40	1	0,24	0,62	497	162	1	0,06	0,81	495	394	1	0,12	0,73
Homogeneity			-	-	-			2	0,72	0,70			2	0,11	0,95
ms4 ms4x BR93-12879															
Total			-	-	-			2	0,05	0,98			2	0,44	0,80
Pooled	121	43	1	0,13	0,72	290	99	1	0,04	0,84	219	177	1	0,14	0,71
Homogeneity			-	-	-			1	0,01	0,92			1	0,30	0,58
ms5 ms5x BR93-12879															
Total			2	0,25	0,88			2	0,22	0,90			2	0,15	0,93
Pooled	374	122	1	0,04	0,84	285	94	1	0,01	0,92	241	186	1	0,01	0,92
Homogeneity			1	0,21	0,65			1	0,21	0,65			1	0,14	0,71
ms6 ms6x BR93-12879															
Total			2	0,11	0,95			3	0,30	0,96			3	0,69	0,88
Pooled	235	76	1	0,05	0,82	192	63	1	0,05	0,82	137	96	1	0,62	0,43
Homogeneity			1	0,06	0,81			2	0,25	0,88			2	0,07	0,97

^{1/} Degrees of Freedom; ^{2/} Chi-square test (χ^2); ^{3/} Probability.

RESUMO

Estudos genéticos de um mutante machoestéril, fêmea-fértil em soja

Foram conduzidos estudos genéticos com um novo mutante espontâneo de soja macho-estéril / fêmeafértil identificado no programa de melhoramento da Embrapa Soja, em Londrina-PR. O mutante apresentando segregação para macho-esterilidade (BR93-12879), foi selecionado em linhagens de teste de progênies, plantas- F_4 , provenientes do cruzamento IAS-5(3) X OCEPAR 9-SS1 realizado em 1993. As gerações F_1 , F_2 e F_3 de cruzamentos entre plantas heterozigotas da linhagem BR93-12879 e plantas homozigotas recessivas (macho-estéreis) das linhagens T 266H (ms_1ms_1), T 259H (ms_2ms_2), T 273H (ms_3ms_3), T 274H (ms_4ms_4), T 277H (ms_5ms_5) e T 295H (ms_6ms_6) foram estudadas objetivando identificar se a nova mutação é condicionada por um novo alelo ou por uma mutação é condicionada por um novo alelo ou por uma mutação ocorrida em um dos seis locos já descritos. As plantas F_1 , F_2 e F_3 dos cruzamentos foram visualmente classificadas como apresentando fenótipo normal de fertilidade masculina ou macho-estéril. Os resultados obtidos no teste de alelismo e estudo de herança

375

entre o genótipo mutante e as linhagens machoestéreis em homozigose recessiva ($ms_1, ms_2, ms_3, ms_4, ms_5$ e ms_6) forneceram evidências de que a característica macho-estéril da linhagem BR93– 12879 possui herança mendeliana simples recessiva e representa uma mutação gênica ocorrida no locoms, alélica ao gene ms_1 já descrito.

REFERENCES

- Bernard, R.L. and Creemens, C.R. 1975. Inheritance of the Eldorado male-sterile. Soybean Genetics Newsletter. 2:37-39.
- Boerma, H.R. and Cooper, R.L. 1978. Increased female fertility associated with the *ms*₁ locus in soybean. Crop Science. 18:344-346.
- Brim, C.A. and Young, M.F. 1971. Inheritance of a male-sterile character in soybeans. Crop Science. 11:564-566.
- Buss, G.R. 1983. Inheritance of a male-sterile mutant from irradiated Essex soybean. Soybean Genetics Newsletter. 10:104-108.
- Delannay, X. and Palmer, R.G. 1982. Genetics and cytology of the ms_4 male-sterile soybean. The Journal of Heritability. 73:219-223.

- LeClerg, E.L.; Leonard, W.H. and Clark, A.G. 1939. Chi Square Tests. p.60-70. In: LeClerg, E.L.; Leonard, W.H. and Clark, A.G. (Orgs.). Field plot technique. Alpha Editions, Minneapolis, Minnesota.
- Palmer, R.G. and Winger, C.L. 1975. Three independent male-sterile mutations at the *ms*₁ locus. Soybean Genetics Newsletter. 2:16-18.
- Palmer, R.G.; Winger, C.L. and Albertsen, M.C. 1978. Four independent mutation at the *ms*₁ locus in soybeans. Crop Science. 18:727-729.
- Palmer, R.G.; Johns, C.W. and Muir, P.S. 1980. Genetics and cytology of the *ms*₃ male- sterile soybean. The Journal of Heritability. 71:343-348.
- Skorupska, H. and Palmer, R.G. 1987. New independent mutation: *ms*₁ (Ames 2). Soybean Genetics Newsletter. 14:181-182.
- Skorupska, H. and Palmer, R.G. 1988. The seventh independent mutation at the ms_1 locus. Soybean Genetics Newsletter. 2:154-156.
- Skorupska, H. and Palmer, R.G. 1989. Genetics and cytology of the ms_6 male-sterile soybean. The Journal of Heritability. 80:304-310.
- Yee, C.C. and Jian, L. 1983. Allelism tests of Shennong male-sterile soybean L-78-387. p.241-242. In: Assembly Symposium Genetics Society, 2th, China, 1983.

Received: June 25, 2001; Accepted: December 17, 2001.